Skip to content

BioStride and EMDB/EMPIAR Alignment Analysis

Note: This document was generated using Claude (Anthropic's AI assistant) through automated analysis of documentation and web sources. While efforts have been made to ensure accuracy, there may be errors or outdated information. Please verify critical details with official EMDB/EMPIAR documentation.

Overview

This document analyzes the alignment between the BioStride schema and the EMDB (Electron Microscopy Data Bank) / EMPIAR (Electron Microscopy Public Image Archive) ecosystem, examining compatibility, complementary features, and integration strategies for cryo-EM data management.

Introduction to EMDB/EMPIAR

What is EMDB?

The Electron Microscopy Data Bank (EMDB) is the global archive for 3D electron microscopy density maps and tomograms. Key characteristics:

  • Purpose: Archive 3D cryo-EM maps, tomograms, and associated metadata
  • Governance: Managed by wwPDB consortium since 2021
  • Content: >30,000 entries (October 2023), doubling every ~2.5 years
  • Format: CCP4/MRC map format with XML metadata headers
  • Integration: ~55% of entries have associated PDB atomic models

What is EMPIAR?

The Electron Microscopy Public Image Archive complements EMDB:

  • Purpose: Archive raw EM data (movies, micrographs, particle stacks)
  • Content: >1,000 entries totaling >2 petabytes
  • Relationship: Raw data underpinning EMDB 3D reconstructions
  • Scope: Single particle, tomography, 2D crystallography data

Current Status (2024)

  • Growth: EMDB projected to reach 50,000 entries by 2025
  • Dominance: 3DEM releases expected to surpass crystallography in 2025
  • Evolution: XML schema v3.0 with enhanced detector and sample metadata
  • Integration: Unified OneDep deposition system with PDB

Fundamental Differences in Scope and Purpose

EMDB/EMPIAR

  • Primary domain: 3D cryo-EM reconstructions and raw EM data
  • Data model: XML metadata + CCP4 maps (EMDB), raw images (EMPIAR)
  • Focus: Final maps, half-maps, and underlying image data
  • Standardization: wwPDB Core Archive with community governance
  • Target users: Cryo-EM practitioners, structural biologists

BioStride

  • Primary domain: Multi-modal structural biology workflows
  • Data model: LinkML semantic schema (generates multiple formats)
  • Focus: Sample-to-structure workflow tracking
  • Standardization: Research schema for data integration
  • Target users: Integrative structural biology researchers

Structural Alignment

EMDB/EMPIAR Concept BioStride Equivalent Alignment Notes
EMDB Entry Study Both represent complete experimental datasets
em_admin Dataset metadata Administrative and submission information
em_sample Sample ✅ Strong alignment - specimen preparation details
em_imaging CryoEMInstrument + ExperimentRun ✅ Microscope parameters and data collection
em_software WorkflowRun.software_name Processing software tracking
em_image_processing WorkflowRun ✅ Processing workflows and parameters
Half-maps DataFile (type: volume) Validation data products
FSC curves QualityMetrics.resolution Resolution assessment
Segmentation DataFile (type: segmentation) Interpreted volumes
EMPIAR raw data DataFile (type: micrograph) ✅ Raw image data references

Detailed Metadata Mapping

Sample Preparation

EMDB XML Schema v3.0:

<em_sample>
  <macromolecule>
    <sciSpeciesName>
    <syntheticFlag>
    <mutantFlag>
  </macromolecule>
  <specimen_preparation>
    <specimen_state>
    <vitrification>
      <cryogen_name>
      <chamber_temperature>
      <chamber_humidity>
    </vitrification>
  </specimen_preparation>
</em_sample>

BioStride Equivalent:

Sample:
  sample_type: protein/complex
  molecular_composition:
    sequences: [...]
    modifications: [...]

SamplePreparation:
  preparation_type: cryo_em

CryoEMPreparation:
  vitrification_method: plunge_freezing
  chamber_temperature: 4.0
  humidity_percentage: 95.0

Data Collection

EMDB Categories:

<em_imaging>
  <microscope>TITAN KRIOS</microscope>
  <accelerating_voltage>300</accelerating_voltage>
  <detector>GATAN K3 (6k x 4k)</detector>
  <electron_dose>40.0</electron_dose>
  <pixel_size>0.85</pixel_size>
</em_imaging>

BioStride Equivalent:

CryoEMInstrument:
  model: "Titan Krios G4"
  accelerating_voltage: 300
  detector_type: direct_electron
  detector_dimensions: "5760x4092"

ExperimentRun:
  technique: cryo_em
  data_collection_strategy:
    total_dose: 40.0

Image2D:
  pixel_size: 0.85
  dose: 40.0

Processing Workflow

EMDB Processing:

<em_image_processing>
  <reconstruction_method>SINGLE PARTICLE</reconstruction_method>
  <software>
    <name>cryoSPARC</name>
    <version>4.4.0</version>
  </software>
  <resolution>2.8</resolution>
  <resolution_method>FSC 0.143 CUT-OFF</resolution_method>
</em_image_processing>

BioStride Equivalent:

WorkflowRun:
  workflow_type: refinement
  software_name: "cryoSPARC"
  software_version: "4.4.0"

QualityMetrics:
  resolution: 2.8
  completeness: 99.5

Key Differences

1. Data Granularity

EMDB/EMPIAR: Map-centric with raw data separation - Final 3D reconstructions (EMDB) - Half-maps for validation - Raw images in separate archive (EMPIAR) - FSC curves and validation metrics

BioStride: Workflow-centric integration - Unified tracking across data types - Sample lineage and preparation history - Processing attempts and parameters - Multi-technique integration

2. Validation Focus

EMDB: Extensive validation infrastructure - Mandatory half-map deposition (since 2022) - FSC validation (0.143 criterion) - Map-model fit assessment - Visual analysis pages

BioStride: Workflow validation - Data integrity (checksums) - Processing provenance - Parameter tracking - Quality metrics capture

3. Archive Philosophy

EMDB/EMPIAR: Specialized repositories - EMDB: Processed maps - EMPIAR: Raw data - PDB: Atomic models - Federated but separate

BioStride: Unified schema - Single coherent model - References to external data - Integrated metadata - Multi-modal support

4. Community Standards

EMDB: Established community practices - EM Validation Task Force (EM-VTF) - Community-driven schema evolution - Standardized deposition via OneDep

BioStride: Emerging integration framework - Flexible for new techniques - Cross-technique harmonization - Research-driven development

Integration Strategies

BioStride → EMDB/EMPIAR Export

# Conceptual mapping for EMDB deposition
def biostride_to_emdb(study):
    emdb_metadata = {
        'em_admin': {
            'title': study.title,
            'authors': extract_operators(study)
        },
        'em_sample': {
            'macromolecule': extract_molecular_info(study.samples),
            'specimen_preparation': extract_prep(study.sample_preparations)
        },
        'em_imaging': {
            'microscope': study.instrument.model,
            'detector': study.instrument.detector_type,
            'pixel_size': study.images[0].pixel_size
        },
        'em_image_processing': {
            'software': extract_software(study.workflow_runs),
            'resolution': study.quality_metrics.resolution
        }
    }
    return generate_xml(emdb_metadata)

EMDB/EMPIAR → BioStride Import

# BioStride representation of EMDB/EMPIAR data
Study:
  title: "Imported from EMDB-12345"

  samples:
    - id: "from_emdb_sample"
      molecular_composition: # From em_sample

  instrument_runs:
    - technique: cryo_em
      instrument_id: # From em_imaging.microscope

  data_files:
    - file_name: "emd_12345.map"
      file_format: mrc
      data_type: volume
      external_ids:
        emdb_id: "EMD-12345"
    - file_name: "empiar_10789_movies.tar"
      data_type: micrograph
      external_ids:
        empiar_id: "EMPIAR-10789"

Hybrid Workflow

  1. Data Collection: Use BioStride to track samples and experiments
  2. Raw Data: Deposit movies/micrographs to EMPIAR
  3. Processing: Track workflows in BioStride
  4. Map Deposition: Submit final maps to EMDB
  5. Model Deposition: Submit coordinates to PDB
  6. Integration: Link all components via BioStride

Complementary Strengths

EMDB/EMPIAR Strengths

  • Established repository: 20+ years of community trust
  • Validation pipeline: Comprehensive map validation
  • Raw data archive: Petabyte-scale EMPIAR storage
  • Community standards: EM-VTF recommendations
  • Global accessibility: wwPDB integration

BioStride Strengths

  • Workflow tracking: Complete experimental history
  • Multi-modal support: Beyond just cryo-EM
  • Sample management: Detailed preparation tracking
  • Processing flexibility: Multiple attempts/parameters
  • Semantic integration: Knowledge graph compatibility

Validation and Quality Control

EMDB Validation Components

  1. Map Validation
  2. Half-map FSC curves
  3. Resolution estimation
  4. Map statistics

  5. Map-Model Validation

  6. FSC between map and model
  7. Atom inclusion analysis
  8. 3D-Strudel scores

  9. Visual Analysis

  10. Orthogonal projections
  11. Surface views
  12. Density distributions

BioStride Quality Tracking

QualityMetrics:
  resolution: 2.8  # Maps to EMDB resolution
  completeness: 99.5
  signal_to_noise: 4.2

DataFile:
  checksum: "sha256:..."  # Data integrity
  file_format: mrc
  processing_level: 3  # Final reconstruction

1. Pre-deposition Phase

Use BioStride for: - Sample preparation documentation - Instrument configuration tracking - Data collection parameters - Processing workflow management

2. Deposition Preparation

# Link BioStride to EMDB/EMPIAR
DataFile:
  file_name: "final_map.mrc"
  external_ids:
    emdb_id: "EMD-12345"  # After deposition
    empiar_id: "EMPIAR-10789"
    pdb_id: "7XYZ"

3. Post-deposition Integration

  • Maintain BioStride records for complete provenance
  • Update with deposition IDs
  • Enable cross-archive queries
  • Support reprocessing efforts

Future Directions

  1. Volume Growth: EMDB doubling every 2.5 years
  2. Method Diversity: Beyond single particle (tomography, MicroED)
  3. Multimodal Integration: Combining EM with other techniques
  4. AI/ML Models: AlphaFold integration, ModelArchive

Opportunities for Alignment

  1. Metadata Harmonization
  2. Align sample preparation vocabularies
  3. Standardize instrument specifications
  4. Common quality metrics

  5. Workflow Standards

  6. Processing pipeline descriptions
  7. Software parameter capture
  8. Validation criteria

  9. Cross-Archive Queries

  10. Federated search capabilities
  11. Linked data approaches
  12. Semantic integration

Technical Development Needs

  1. Conversion Tools
  2. biostride2emdb: Generate EMDB XML from BioStride
  3. empiar_linker: Connect BioStride to EMPIAR datasets
  4. validation_bridge: Map validation metrics

  5. Schema Extensions

  6. Add EMDB-specific validation metrics to BioStride
  7. Include half-map tracking
  8. Support segmentation references

Best Practices

For Researchers

  1. Use BioStride during active research for comprehensive tracking
  2. Prepare for deposition early with required EMDB metadata
  3. Maintain links between BioStride records and archive IDs
  4. Document workflows thoroughly for reproducibility

For Developers

  1. Implement validators for EMDB compliance
  2. Build converters for seamless data flow
  3. Maintain mappings as schemas evolve
  4. Support community standards and practices

Conclusion

BioStride and EMDB/EMPIAR serve complementary and essential roles in the cryo-EM data ecosystem:

  • EMDB/EMPIAR provides the definitive archives for 3D maps and raw EM data with established validation
  • BioStride offers comprehensive workflow tracking and multi-modal integration capabilities

The optimal approach involves: 1. Using BioStride for experiment management and workflow tracking 2. Depositing to EMDB/EMPIAR for long-term archival and community access 3. Maintaining bidirectional links for complete data provenance 4. Leveraging each system's strengths throughout the research lifecycle

This complementary relationship ensures that both the experimental journey (BioStride) and the scientific products (EMDB/EMPIAR) are properly documented, validated, and preserved for the global research community. As cryo-EM continues its explosive growth, the integration of these systems becomes increasingly important for managing the complexity and scale of modern structural biology research.